

 zCOBOL System Programmer’s Guide
v1.5.06

Automated Software Tools
Corporation.

zc390 Translator COBOL Language Verb
Macros COMPUTE Statement Example
zCOBOL Target Source Language
Generation Macros ZC390LIB Runtime
Library Base Free Code Generation zCOBOL EXEC CICS

Support zCOBOL Data Types Command Line options for zCOBOL Compiler zCOBOL
File Types Trademarks Credits

zc390 Translator

The zc390 translator is a java regular expression based parser which reads COBOL source program and
generates HLASM compatible mainframe assembler source program in one pass. Each recognized
COBOL verb starts a new assembler macro call statement with all the parameters up to the next verb,
period, or paragraph label passed as positional parameters. Periods generate a separate macro call to
PERIOD to generate end to all the structures in the previous sentence. Paragraph and section labels
generate call to LABEL with the name and type of label to generate. All hyphens in names are
translated to underscores for HLASM compatibility.

COBOL Language Verb Macros

All the macros for the COBOL language verbs and section headings are stored in the macro library
z390\zcobol. These macros parse the parameters, validate them for any syntax errors, and issue calls to
generation macros in separate directory as described below. For example, the zcobol\IF.MAC macro
generates multiple calls to the generation macros GEN_COMP, GEN_BC GEN_B, and GEN_LABEL.
There are no language specific code generation macros in the zCOBOL directory so it is shared across
multiple target language environments. All the macros are written in structured form using the z390
ZSTRMAC SPE structured programming extensions such as AIF, AELSEIF, AELSE, AEND,
AWHILE, etc. As a result there are no explicit AGO or AIF labels in these macros.

COMPUTE Statement Example

The COBOL compute statement now supported in v1.5.00d is a good example to study to understand
how the zCOBOL compiler works. The steps followed to compile the following MOVE and
COMPUTE statements are as follows:

 77 FLT-SRT USAGE FLOAT-SHORT OCCURS 2. MOVE 1.1 TO FLT-SRT(2)COMPUTE
FLT-SRT(2) = FLT-SRT(2)+2.2

1 zc390 translator generates the following 2 zCOBOL verb macro call statements
MOVE 1.1,'TO',FLT_SRT,"(',2,')'COMPUTE
FLT_SRT,'(',2,')',=,FLT_SRT,'(",2,')',+,2.2

2 The MOVE macro uses shared copybook routine GET_FIELD_PARM to parse the two fields for
MOVE and store resulting field name and symbol table index. For the literal 1.1 the index is 0, for
the subscripted field, the name is set to explicit register reference including length
0ffset(length,register) and the code is generated to set the register to address of the subscripted field.

3 The MOVE macro next issues call to GEN_MOVE with the source and target field names and
system table indexes.

4 The GEN_MOVE macro checks the type of each field and generates appropriate code to move
value from source to target field. In this case it uses LARL to set register to address of DFP short
value of 1.1 in literal table and then generates MVC to move the literal to the target subscripted
field.

5 The COMPUTE uses GET_FIELD_PARM to obtain name and index of target field and then
extracts parms in expression following the = and then calls ZC_CALC macro to generate code for
expression and store result in specified target field. This macro can be used by IF and other verb
macros to calculate expression for loop etc.

Copyright 2011 Automated Software Tools Corporation. This is part of z390 distributed under open source GPL License.

The ZC_CALC macro parsers the expression parameters into Backus Normal Form using two
stacks. One stack has the operators in expression and the other has the field parm index pointers.
Following the rules of precedence, the operators and associated parameter pointers are removed
from the stacks and stored sequentially in an operation table containing the operators, 2 operands,
and the target field for each operation. Temporary storage fields are represented using negative
indexes instead of position and a table of temporary fields created along with their type is
maintained. A queue of free temporary fields is maintained and once a temporary field has been
used in an operation, that temporary field is on the free queue for reuse rather than allocating a new
temporary storage field. Once the expression has been parsed and all the operation table entries have
been generated, the last target field is replaced with the result field passed to ZC_CALC and then
the operation table is scanned and the generation macros for each operation are called to generate
code to perform the operation. Just prior to generating code for an operation, the two input
parameter types are used to determine the required type of result to minimize any loss of precision
during the calculations. A call to GEN_MOVE is made to move the first operand field to the target
field prior to performing add, subtract, etc. on the target field for operation. If the first operand is the
same as the target field, the move can be omitted but that is not always possible to determine in the
case of subscripting and indexing where different variables may just happen to have the same value.
The called generation macros GEN_ADD, GEN_SUB, GEN_MPY, and GEN_DIV check the field
types and perform the necessary conversion when types do not match.

See demo added in zcobol\demo\callcomp directory which contains CALLCALC.MLC main assembler
program which calls subroutine COMPSUM.CBL which uses COMPUTE statement to calculate sum of
15 different numeric data field types and returns sum as packed decimal for editing and display by
calling program. There is a paper about this demo here:

http://www.z390.org/zcobol\demo\callcomp\zcobol_COMPUTE.pdf

.

zCOBOL Target Source Language Generation Macros

All the target source language generation macros called by the COBOL verb macros in z390\zcobol are
stored in the following directories by target language:

Current only the z390 HLASM compatible source generation macros are being fully developed along
with the required runtime support functions stored in the zcobol\z390\ZC390LIB.390 dynamically

loaded runtime module. However the zCOBOL demos include a hello world COBOL program which
can be compiled and executed in each of the target environments form the same
zcobol\demo\HELLO.CBL source program. The following commands generate the corresponding
source language equivalent and executable:

If you are interested in joining in the open source zCOBOL development effort in any of the 4 target
language environments or want to add another target language environment, join the zcobol
development email discussion group and make your interests known. Melvyn Maltz is currently
developing additional EXEC CICS support for zCOBOL programs.

ZC390LIB Runtime Library

The z390\zcobol\z390 code generation macro directory also contains all the source code and the
ZC390CVT.CPY copybook required to build the z390\linklib\ZC390LIB.390 runtime load module
which is dynamically loaded by all generated z390 zCOBOL programs. This module contains the
following components: The ZC390CVT.CPY copybook is used in every zCOBOL generated program
to define the DSECT addressed by register 9. The same copybook is also used in ZC390LIB.MLC to
generate the CVT at the beginning of the ZC390LIB.390 runtime load module with addresses of all the
entries followed by work areas used by the code generation macros.

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program
Command Generated Source Code Target Generated Executable Code

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program
Command Generated Source Code Target Generated Executable Code
ZC390CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.MLC/BAL zcobol\demo\HELLO.390 requires
z390 and J2SE on Windows/Linux

ZCJAVCLG
zcobol\demo\HELLO

zcobol\demo\HELLO.java zcobol\demo\HELLO.class requires
J2SE on Windows/Linux

ZCVCECLG
zcobol\demo\HELLO

zcobol\demo\HELLO.ccp zcobol\demo\HELLO.exe requires
MS VCE runtime on Windows

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program
Command Generated Source Code Target Generated Executable Code
ZC390CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.MLC/BAL zcobol\demo\HELLO.390 requires
z390 and J2SE on Windows/Linux

ZCJAVCLG
zcobol\demo\HELLO

zcobol\demo\HELLO.java zcobol\demo\HELLO.class requires
J2SE on Windows/Linux

ZCVCECLG
zcobol\demo\HELLO

zcobol\demo\HELLO.ccp zcobol\demo\HELLO.exe requires
MS VCE runtime on Windows

ZC586CLG zcobol\demo\HELLO HLA/ASM zcobol\demo\HELLO exe requires

Base Free Code Generation

The zCOBOL code generation macros in zcobol\z390 generate base free code for the procedure division
using relative instructions for both branch addressing and for literal addressing as required. The only
address constants generated in zCOBOL programs are for statically linked CALL's to other zCOBOL or
assembler programs. The only limit on the combined size of working storage and the procedure division
is 16 MB. In order to use relative addressing for literals, all odd length literals are padded to even
lengths. The LARL instruction is used to set address of data field or literal field as required for use in
following RX type instructions. To address working storage and linkage section data fields, conventional
base registers are dynamically allocated as required for use in RX type instructions. Since R13 always
points to the beginning of working-storage, no dynamic base registers are required for access to data
items in the first 4k of working storage.

zCOBOL EXEC CICS Support

When the option CICS is specified on the command line for ZC390C, ZC390CL, or ZC390CLG, then
the zcobol\ZCOBOL. MAC global option &ZC_CICS is set on and the following changes in code
generation are made:

1 The CICS option will generate call to DFHEIENT to initialize CICS prior to executing user
code starting at the first program CSECT. 2 A DFHEISTG DSECT is generated at the beginning of

working-storage instead of WSLOC
LOCTR and warnings are generated for any data VALUE clauses defined in working-storage
section.

zCOBOL Data Types

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program
Command Generated Source Code Target Generated Executable Code
ZC390CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.MLC/BAL zcobol\demo\HELLO.390 requires
z390 and J2SE on Windows/Linux

ZCJAVCLG
zcobol\demo\HELLO

zcobol\demo\HELLO.java zcobol\demo\HELLO.class requires
J2SE on Windows/Linux

ZCVCECLG
zcobol\demo\HELLO

zcobol\demo\HELLO.ccp zcobol\demo\HELLO.exe requires
MS VCE runtime on Windows

ZC586CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.HLA/ASM zcobol\demo\HELLO.exe requires
HLA, MASM, and MS VCE runtime
on Windows

ZC390LIB.MLC Contains ZC390LIB CSECT and COPY ZC390CVT to include all object
modules following the CVT at the beginning

ZC390NUC.MLC Included module with system function routines such as CALL,
GOBACK, STOPRUN, PERFORM, and PMCHECK to check for end of
current performed paragraph or section

ABORT.MLC Contains module called to abort execution with reason code
ACCEPT.MLC Contains support for ACCEPT date, time, day of week

1 The zCOBOL option FLOAT(HEX/BINARY/DECIMAL) can be used to change the default from DECIMAL

to HEX or BINARY for the generic types FLOAT-SHORT, FLOAT-LONG, and FLOAT-EXTENDED.
2 COMP-3 packed and also zoned decimal are limited to 18 digits per COBOL standard unless option EXTEND is set

allowing up to 31 digits for both packed decimal and zoned decimal fields.z390 and zCOBOL options include
the following:

Command Line options for zCOBOL Compiler

To turn off an option that is on, prefix the option name with NO on command line or in OPT options file.

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program
Command Generated Source Code Target Generated Executable Code
ZC390CLG zcobol\demo\HELLO.MLC/BAL zcobol\demo\HELLO.390 requires

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program
Command Generated Source Code Target Generated Executable Code
ZC390CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.MLC/BAL zcobol\demo\HELLO.390 requires
z390 and J2SE on Windows/Linux

ZCJAVCLG
zcobol\demo\HELLO

zcobol\demo\HELLO.java zcobol\demo\HELLO.class requires
J2SE on Windows/Linux

ZCVCECLG
zcobol\demo\HELLO

zcobol\demo\HELLO.ccp zcobol\demo\HELLO.exe requires
MS VCE runtime on Windows

ZC586CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.HLA/ASM zcobol\demo\HELLO.exe requires
HLA, MASM, and MS VCE runtime
on Windows

ZC390LIB.MLC Contains ZC390LIB CSECT and COPY ZC390CVT to include all object
modules following the CVT at the beginning

ZC390NUC.MLC Included module with system function routines such as CALL,
GOBACK, STOPRUN, PERFORM, and PMCHECK to check for end of
current performed paragraph or section

ABORT.MLC Contains module called to abort execution with reason code
ACCEPT.MLC Contains support for ACCEPT date, time, day of week
DISPLAY.MLC display any type field or literal
INSPECT.MLC Inspect field tallying, replacing, or transforming.
USAGE PICTURE Z390

Assembler
Type

Description

COMP S9(4) H 16 bit binary
COMP S9(9) F 32 bit binary
COMP S9(18) G 64 bit binary
COMP S9(39) Q 128 bit binary
FLOAT-HEX-7 COMP-1 EH HFP short 7 digits
FLOAT-HEX-15 COMP-2 DH HFP long - 15 digits
FLOAT-HEX-30 LH HFP extended - 30 digits

FLOAT-BINARY-7 EB BFP short 7 digits

FLOAT-BINARY-16 DB BFP long - 16 digits

FLOAT-BINARY-34 LB BFP extended - 34 digits
FLOAT-DECIMAL-7 FLOAT-SHORT EB DFP short 7 digits
FLOAT-DECIMAL-16 FLOAT-LONG DB DFP long - 16 digits

FLOAT-DECIMAL-34
FLOAT-EXTENDE
D

LB DFP extended - 34 digits

• Options are passed to the zCOBOL macro stage via CBL macro call with the options defined as
positional parameters

zCOBOL File Types

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program
Command Generated Source Code Target Generated Executable Code
ZC390CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.MLC/BAL zcobol\demo\HELLO.390 requires
z390 and J2SE on Windows/Linux

ZCJAVCLG
zcobol\demo\HELLO

zcobol\demo\HELLO.java zcobol\demo\HELLO.class requires
J2SE on Windows/Linux

ZCVCECLG
zcobol\demo\HELLO

zcobol\demo\HELLO.ccp zcobol\demo\HELLO.exe requires
MS VCE runtime on Windows

ZC586CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.HLA/ASM zcobol\demo\HELLO.exe requires
HLA, MASM, and MS VCE runtime
on Windows

ZC390LIB.MLC Contains ZC390LIB CSECT and COPY ZC390CVT to include all object
modules following the CVT at the beginning

ZC390NUC.MLC Included module with system function routines such as CALL,
GOBACK, STOPRUN, PERFORM, and PMCHECK to check for end of
current performed paragraph or section

ABORT.MLC Contains module called to abort execution with reason code
ACCEPT.MLC Contains support for ACCEPT date, time, day of week
DISPLAY.MLC display any type field or literal
INSPECT.MLC Inspect field tallying, replacing, or transforming.
USAGE PICTURE Z390

Assembler
Type

Description

COMP S9(4) H 16 bit binary
COMP S9(9) F 32 bit binary
COMP S9(18) G 64 bit binary
COMP S9(39) Q 128 bit binary
FLOAT-HEX-7 COMP-1 EH HFP short 7 digits
FLOAT-HEX-15 COMP-2 DH HFP long - 15 digits
FLOAT-HEX-30 LH HFP extended - 30 digits

FLOAT-BINARY-7 EB BFP short 7 digits

FLOAT-BINARY-16 DB BFP long - 16 digits

FLOAT-BINARY-34 LB BFP extended - 34 digits
FLOAT-DECIMAL-7 FLOAT-SHORT EB DFP short 7 digits
FLOAT-DECIMAL-16 FLOAT-LONG DB DFP long - 16 digits

FLOAT-DECIMAL-34
FLOAT-EXTENDE
D

LB DFP extended - 34 digits

COMP-3 S9(31) P (3) Packed decimal up to 31 digits with option EXTEND

 S9(31) Z (3) Zoned Decimal up to 31 digits with option EXTEND
(uses PD support)

 X X Characters

FLOAT-SHORT EH,EB,ED Use option FLOAT(HFP/BFP/DFP)

FLOAT-LOG DH,DB,DD Use option FLOAT(HFP/BFP/DFP)

FLOAT-EXTENDED LH,LB,LD Use option FLOAT(HFP/BFP/DFP)
POINTER A 31 bi bi

Trademarks

IBM, CICS, HLASM, MVS, OS/390, VSAM, z9, z10, and z/OS are registered trademarks of
International Business Machines Corporation

Credits

Author : Don Higgins
Formatting : Walter Petras
Z390 version :

